Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Microorganisms ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2043867

ABSTRACT

In the light of the SARS-CoV-2 pandemic and growing numbers of bacteria with resistance to antibiotics, the development of antimicrobial coatings is rising worldwide. Inorganic coatings are attractive because of low environmental leakage and wear resistance. Examples for coatings are hot metal dipping or physical vapor deposition of nanometer coatings. Here, magnetron sputtering of various transition metals, such as gold, ruthenium and tantalum, was investigated. Metal films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX). We investigated the growth of Pseudomonas aeruginosa isolated from household appliances on different sputter-coated metal surfaces. The fine-grained nanometric structure of these metal coatings was between 14 nm (tantalum) and 26 nm (gold) and the roughness was in a range of 164 pm (ruthenium) to 246 pm (gold). Antibacterial efficacy of metal surfaces followed the order: gold > tantalum > ruthenium. Interestingly, gold had the strongest inhibitory effect on bacterial growth, as analyzed by LIVE/DEAD and CFU assay. High-magnification SEM images showed dead bacteria characterized by shrinkage induced by metal coatings. We conclude that sputtering might be a new application for the development of antimicrobial surfaces on household appliances and or surgical instruments.

2.
Materials (Basel) ; 15(17)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2010197

ABSTRACT

Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton (CO) modified by magnetron sputtering with copper (Cu) on bioactive properties against Gram-positive and Gram-negative bacteria and four viruses and also on the some comfort parameters. PET/Cu and CO/Cu fabrics have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia. CO/Cu fabric has good antiviral activity in relation to vaccinia virus (VACV), herpes simplex virus type 1 (HSV-1) and influenza A virus H1N1 (IFV), while its antiviral activity against mouse coronavirus (MHV) is weak. PET/Cu fabric showed weak antiviral activity against HSV-1 and MHV. Both modified fabrics showed no significant toxicity in comparison to the control medium and pristine fabrics. After Cu sputtering, fabric surfaces became hydrophobic and the value of the surface free energy was over four times lower than for pristine fabrics. The modification improved thermal conductivity and thermal diffusivity, facilitated water vapour transport, and air permeability did not decrease.

3.
Int J Biol Macromol ; 207: 100-109, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1814498

ABSTRACT

In this study, Cu/Zn galvanic electrodes were sputtered on the two surfaces of hydrophilic cotton fiber nonwovens (Cotton) to prepare hydro electroactive Cu/Cotton/Zn composites. When the Cu/Cotton/Zn was used as a functional layer in the face mask, the Cu/Zn galvanic electrodes can be spontaneously activated by water vapor molecules exhaled by the human body and generate galvanic current. Based on this, the hydro electroactive Cu/Cotton/Zn demonstrated excellent antibacterial activity against Escherichia coli and Staphylococcus aureus and could deactivate Enterovirus 71 (EV71) virions transmitted through the respiratory tract by 97.72% after 15 min of contact. Moreover, the Cu/Cotton/Zn did not affect the particle filtration efficiency and breathability of the face mask's polypropylene (PP) melt-blown layer. Furthermore, the cytotoxicity assessment of Cu/Cotton/Zn showed no cytotoxicity, indicating good biological security. Overall, the Cu/Cotton/Zn may provide a new approach to increase the antibacterial and antiviral performance of current personnel protective equipment on the market.


Subject(s)
Antiviral Agents , Cotton Fiber , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Escherichia coli , Humans , Staphylococcus aureus , Zinc
4.
18th International Scientific and Technical Conference Rapid Solidification Materials and Coatings, RSMC 2021 ; 2144, 2021.
Article in English | Scopus | ID: covidwho-1684457

ABSTRACT

Possible plasma and photonic methods and devices for monitoring and preventing dangerous infections and human diseases are presented. In experiments with different types of atmospheric pressure discharges in different gases, the significant bactericidal effect was found. The prototype of device based on the method of absorption spectroscopy for detecting human diseases by biomarkers in the exhaled air has been proposed and tested. The importance of the plasma technology of deposition of coatings by magnetron sputtering for the creation of anti-covid masks and high-quality optics (mirrors) for photon monitoring devices is emphasized. © 2021 Institute of Physics Publishing. All rights reserved.

5.
J Hazard Mater ; 428: 128239, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1610835

ABSTRACT

Face mask has become an essential and effective apparatus to protect human beings from air pollution, especially the air-borne pathogens. However, most commercial face masks can hardly achieve good particulate matters (PMs) and high bactericidal efficacy concurrently. Herein, a bilayer structured composite filter medium with built-in antimicrobial activities was constructed by combining cotton woven modified by magnetron sputtered Ag/Zn coatings and electrospun poly(vinylidene fluoride)/polystyrene (PVDF/PS) nanofibers. With the benefit of external moisture, an electrical stimulation was generated inside the composite fabric and thus endowed the fabric antimicrobial function. The resultant composite fabric presented conspicuous performance for integrated air pollution control, high filtration performance towards PM0.3 (99.1%, 79.2 Pa) and exceptional interception ratio against Escherichia coli (99.64%) and Staphylococcus aureus (98.75%) within 20 min contact. The high efficiency contact sterilization function of the bilayer fabric could further potentially promote disinfection and reuse of the filter media. This work may provide a new perspective on designing high-performance face mask media for public health protection.


Subject(s)
Anti-Infective Agents , Nanofibers , Fluorocarbon Polymers , Humans , Masks , Polyvinyls , Zinc
6.
Materials (Basel) ; 14(23)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1560630

ABSTRACT

One-hundred-nanometer films consisting of silver, copper, and gold nanocrystallites were prepared, and their antibacterial properties were quantitatively measured. The magnetron-sputtering method was used for the preparation of the metallic films over the glass plate. Single- and double-layer films were manufactured. The films were thoroughly characterized with the XRD, SEM, EDS, and XPS methods. The antibacterial activity of the samples was investigated. Gram-negative Escherichia coli, strain K12 ATCC 25922 (E. coli), and Gram-positive Staphylococcus epidermidis, ATCC 49461 (S. epidermidis), were used in the microbial tests. The crystallite size was about 30 nm in the cases of silver and gold and a few nanometers in the case of copper. Significant oxidation of the copper films was proven. The antibacterial efficacy of the tested samples followed the order: Ag/Cu > Au/Cu > Cu. It was concluded that such metallic surfaces may be applied as contact-killing materials for a more effective fight against bacteria and viruses.

7.
Materials (Basel) ; 14(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1480852

ABSTRACT

TPU-coated polyester fabric was used as the substrate of a flexible temperature sensor and Ag nanoparticles were deposited on its surface as the temperature sensing layer by the magnetron sputtering method. The effects of sputtering powers and heat treatment on properties of the sensing layers, such as the temperature coefficient of resistance (TCR), linearity, hysteresis, drift, reliability, and bending resistance, were mainly studied. The results showed that the TCR (0.00234 °C-1) was the highest when sputtering power was 90 W and sputtering pressure was 0.8 Pa. The crystallinity of Ag particles would improve, as the TCR was improved to 0.00262 °C-1 under heat treatment condition at 160°. The Ag layer obtained excellent linearity, lower hysteresis and drift value, as well as good reliability and bending resistance when the sputtering power was 90 W. The flexible temperature sensor based on the coated polyester fabric improved the softness and comfortableness of sensor, which can be further applied in intelligent wearable products.

SELECTION OF CITATIONS
SEARCH DETAIL